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ABSTRACT

The issue of classifying objects into groups when measured variables in an experiment are mixed has 
attracted the attention of statisticians. The Smoothed Location Model (SLM) appears to be a popular 
classification method to handle data containing both continuous and binary variables simultaneously. 
However, SLM is infeasible for a large number of binary variables due to the occurrence of numerous 
empty cells. Therefore, this study aims to construct new SLMs by integrating SLM with two variable 
extraction techniques, Principal Component Analysis (PCA) and two types of Multiple Correspondence 
Analysis (MCA) in order to reduce the large number of mixed variables, primarily the binary ones. 
The performance of the newly constructed models, namely the SLM+PCA+Indicator MCA and 
SLM+PCA+Burt MCA are examined based on misclassification rate. Results from simulation studies for a 
sample size of n=60 show that the SLM+PCA+Indicator MCA model provides perfect classification when 
the sizes of binary variables (b) are 5 and 10. For b=20, the SLM+PCA+Indicator MCA model produces 
misclassification rates of 0.3833, 0.6667 and 0.3221 for n=60, n=120 and n=180, respectively. Meanwhile, 
the SLM+PCA+Burt MCA model provides a perfect classification when the sizes of the binary variables 
are 5, 10, 15 and 20 and yields a small misclassification rate as 0.0167 when b=25. Investigations into 
real dataset demonstrate that both of the newly constructed models yield low misclassification rates 
with 0.3066 and 0.2336 respectively, in which the SLM+PCA+Burt MCA model performed the best 
among all the classification methods compared. The findings reveal that the two new models of SLM 

integrated with two variable extraction techniques 
can be good alternative methods for classification 
purposes in handling mixed variable problems, 
mainly when dealing with large binary variables.   

Keywords: Classification, large mixed variables, 
multiple correspondence analysis, Principal 
Component Analysis (PCA), Smoothed Location 
Model (SLM)
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INTRODUCTION

Classification is a process of grouping objects into groups based on common attributes 
(Hunter, 2009). Classification tasks can be found in various fields ranging from medical, 
financial to education (Veer et al., 2002; Hauser & Booth, 2011). Many approaches such as 
quadratic discriminant analysis (Smith, 1947), logistic discrimination (Day & Kerridge, 1967), 
smoothed location model (Mahat et al., 2007; Hamid & Mahat, 2013) and k-nearest neighbour 
(Fix & Hodges, 1951) have been applied to solve classification problems. Compared to other 
approaches, the Smoothed Location Model (SLM) can be considered a good choice for handling 
mixtures of continuous and binary variables simultaneously (Vlachonikolis & Marriott, 1982). 
However, SLM is infeasible if dealing with a large number of binary variables. 

In order to construct a classification model based on SLM, s cells of a multinomial table 
have to be generated from the b binary values for each group, where s = 2b. Due to this structure, 
it was obvious that the number of multinomial cells in SLM increased exponentially with the 
size of binary variables considered in the study. This situation will increase the probability 
of the occurrence of empty cells if some multinomial cells are created. The occurrence of 
some empty cells will then cause the smoothed estimators of the location model to be biased 
and thus, affect the classification performance. Thus, it is very important to reduce the large 
number of binary variables in order to obtain an accurate classification model for the problem 
of mixed variables. 

Multiple Correspondence Analysis (MCA) has been used to handle the problem of high 
dimensionality of categorical variables which has been proven to improve classification (Saporta 
& Niang, 2006; Nenadic & Greenacre, 2007). As expressed by Green et al. (1987) as well as 
Hoffman and Batra (1991), MCA has been widely applied in studies involving a large number 
of categorical variables. In fact, there are four different types of MCA i.e. Indicator MCA, 
Burt MCA, JCA and Adjusted MCA. A study by Hamid and Mahat (2013) focussed on high 
dimensional data, but only Burt MCA is used to reduce a large number of binary variables. 

It is well known that Indicator MCA is a classic approach to MCA. It is to execute a simple 
correspondence analysis on the indicator matrix by performing singular value decomposition on 
the matrix of standardised residuals calculated on the indicator matrix. Burt matrix is actually 
the cross product of the indicator matrix. Due to the standard coordinates of the category 
points analysed by Burt MCA is similar to those analysed by the Indicator MCA, hence this 
study will observe the behaviour of the Indicator MCA and Burt MCA on the performance of 
the SLM. Our focus is on the performance of the newly constructed SLM, resulting from the 
integration of SLM with PCA and Indicator MCA as well as from the integration of SLM with 
PCA and Burt MCA in order to classify objects in some conditions, such as different sizes of 
binary and continuous variables and samples.   

MATERIALS AND METHODS

Smoothed Location Model (SLM)

SLM is one of the methods that can handle both continuous and binary variables simultaneously. 
For classification tasks involving two groups, let Group 1 and Group 2 be denoted as π1 and 
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π2, respectively. A vector  is observed for each object in both groups, where the 
vector of b binary variables is represented by  and the vector of, c, continuous 
variables is represented by . To conduct a classification model, s cells of a 
multinomial table are generated from the b binary values for each group, where s = 2b. The b 
binary variables will create some multinomial cells where the multinomial cell m can be defined 

by each different pattern of x uniquely with x falling in cell . The probability 

of obtaining an object in cell m of π1 is denoted by pim. We assume that c continuous variables 

have a multivariate normal distribution with mean μim in cell m of π1 and a common covariance 
matrix Σ across all cells and groups so that . 

A future object  is allocated to π1 if this object falls into the multinomial cell 
m and y satisfies   

       			          (1)

otherwise, zT will be allocated to π2 (Krzanowski, 1980; 1993; 1995). For this classification 
model, we assume that a constant a, which is the misclassification costs, is equal to the prior 
probabilities in both groups, and hence log(a) = 0 . 

However, the parameters of SLM in Equation (1) are commonly unknown and will be 
replaced with estimators obtained from the samples. By using non-parametric smoothing 
estimation, the mean μim of each cell is fitted by a weighted average of all continuous variables 
from the data in the relevant group π1. Thus, the vector mean of jth continuous variables y of 
cell m in π1 is estimated using:

       					            (2)

subject to 

       					             (3)

where m, k = 1, 2,…, s; i = 2 ; nik is the number of objects falling in cell k of π1; yrijk is the jth 

continuous variable of rth object that falls in cell k of π1 and wij (m, k) is a weight with respect 
to cell s of objects that fall in cell k.  

In this study, the smoothing weight, wij (m, k), in the pattern of  is chosen 
where 0 < λ < 1. This study chooses a method so that λ has the same value for all continuous 
variables in cells and groups and this could prevent the need to estimate many parameters. The 
d (m, k) explains the dissimilarity of the cell m and cell k of the binary vectors, which can be 
expressed as . 
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The estimated means  is then used to compute a smoothed pooled covariance matrix 
through

       				          (4)

where nim is the number of objects falling in cell m of π1; yim is the vector of continuous variable 
of rth object in cell m of π1 and gi is the number of non-empty cells in the training set of π1. 

Finally, the cell probabilities pim can be obtained using the standardised exponential 
smoothing by

       							               (5)

where

       							               (6)

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a statistical tool used to reduce the dimensionality of the 
data while retaining important information of the original data as much as possible (Kemsley, 
1996). PCA has been highlighted as an adequate variable extraction technique for continuous 
variables (Costa et al., 2013). PCA reduces the data dimension by choosing a few orthogonal 
linear combinations of the original variables which show the largest variance accounted for. 
The linear combination of variables with the largest variance is chosen and denoted as the first 
principal component (PC1). Meanwhile, the second principal component (PC2) will account 
for and explain the maximal variability, which is not included in the PC1, and this component 
is uncorrelated with PC1. The same process is continued to obtain PC3, PC4 and so on (Quinn 
& Keough, 2002; Rengner, 2008).  

Consider a set of data that consists of p numeric variables with q principal components. 
The random vector is labelled  with a mean vector, , while 

 is a covariance matrix between yj and yk, where j, k = 1, 2, …, q. 
Next, the Eigenvectors (μj ) and the respective Eigenvalues (λj) will be inserted into

       									               (7)

Then, the eigenvalues are determined through

      								                (8)

where I is the identity matrix that has the same order as Cjk and  is the determinant of a matrix. 
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Indicator MCA and Burt MCA

MCA has been demonstrated to show similar capability as PCA, but on the binary variables 
(Bar-Hen, 2002). MCA is good for detecting and representing the underlying structures of data 
(usually nominal categorical data) in a low dimensional space (Greenacre & Blasius, 2006). As 
such, it can be seen as a generalisation of PCA when the variables to be analysed are categorical 
instead of quantitative. The indicator Z is the matrix with cases (row) and category variables 
(column) where the category variables are coded in the form of dummy variables (binary 
matrix of indicator) with the value of 0 and 1. Meanwhile, Burt matrix is the cross product of 
the indicator matrix, which can be expressed in the form of B representing Burt matrix while 
Z is the indicator matrix (Greenacre, 2007; Nenadic & Greenacre, 2007).  

Using the notation from Tenenhaus and Young (1985), suppose that a set of m categorical 
variables X1, X2, ..., Xm  with categorical size of k1, k2, ..., km, respectively is used to describe 
an original data matrix. Category l of variable j is defined as jl and coded into binary matrix 
Z where the general entries for Z are defined as 

       				            (9)

A complete indicator  with n rows and d columns  is obtained 
by merging the matrices Z. Then a (d, d) symmetric matrix of Burt B x ZT Z is built, where ZT is 
a transpose matrix of Z. Let X be a (d, d) diagonal matrix that has the same diagonal elements 
as matrix B, then a new matrix S is constructed from Z and X  by 

       							              (10)

In this study, the constructed SLM was evaluated and measured through a misclassification 
rate using leave-one-out (LOO) procedure. The misclassification rate can be obtained by taking 
the total number of misclassified objects and dividing it by the total number of objects in the 
group. The misclassification rate can be obtained by  

       								               (11)

Algorithm 1 outlines the steps of the discrimination process with variable extraction techniques 
that are involved in this study for high dimensional data of mixed variables.

Data Generation  

Thirty sets of data were generated for the purpose of this study using the R software package. 
The sample size (n) was set to have 60, 120 and 180 while the sizes of continuous variables 
(c) were set to 30, 60 and 90. The sizes of binary variables (b) are set to 5, 10, 15, 20 and 25. 
Observations were made on the behaviour of the Indicator MCA and Burt MCA towards the 
performance of the newly constructed SLM using these generated datasets. Thus, the focus of 
this study was on the performance of two newly constructed SLM models resulting from the 
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SLM integrated with PCA and Indicator MCA and SLM integrated with PCA and Burt MCA 
in order to classify objects when dealing with a large number of mixed variables, primarily 
the binary. Algorithm 1 describes the steps involved in constructing these new classification 
models, symbolised as SLM+PCA+Indicator MCA model and SLM+PCA+Burt MCA model, 
implemented in the leave-one-out fashion. 

ALGORITHM 1 

Step 1:	 Omit an object k from the sample n, where the remaining objects are treated as a 
training set.

Step 2:	 Perform PCA to extract and reduce the continuous variables using the training set.

Step 3:	 Perform Indicator MCA to extract and reduce the binary variables using the training 
set.

Step 4:	 Construct new SLM using the reduced sets of continuous and binary variables that 
have been extracted in Steps 2 and 3, which produces SLM+PCA+Indicator MCA 
model.

Step 5:	 Predict the group of the omitted object k using the new model constructed in Step 
4 and assign error   if the prediction made is correct, otherwise assign.

Step 6: 	 Repeat all the steps from 1 to 5 for each object.

Step 7:	 Compute the misclassification rate using the leave-one-out procedure for model 
evaluation.

Then, all the steps are repeated except for Step 3, where the Indicator MCA is replaced with the 
Burt MCA in order to construct another new SLM known as the SLM+PCA+Burt MCA model.

RESULTS AND DISCUSSION

Results from Simulation Study 

Tables 1, 2 and 3 summarise the results of a simulation study for the two newly built 
SLM+PCA+Indicator MCA and SLM+PCA+Burt MCA models for n=60, n=120 and n=180, 
respectively. The performances of these newly constructed models are assessed and compared 
based on the misclassification rates calculated through the LOO procedure.   

Table 1 displays the performance of the SLM+PCA+Indicator MCA model as well 
as the SLM+PCA+Burt MCA model specifically for n=60. The highest misclassification 
rate was 0.5333 obtained by the SLM+PCA+Indicator MCA model when b=25, while the 
SLM+PCA+Burt MCA model only showed 0.0167 of the misclassification rate for the same 
binary size. From the results, it can be observed that the misclassification rate was strongly 
related with the number of binary components that were extracted. For the SLM+PCA+Indicator 
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MCA model, there was an increase of the misclassification rate when the number of binary sets 
extracted was increased. The same behaviour was observed for the SLM+PCA+Burt MCA 
model. The SLM+PCA+Indicator MCA model shows 0.3833 of the misclassification rate when 
nine binary components were extracted from the original b=20. In contrast, SLM+PCA+Burt 
MCA model classified all objects correctly with only six extracted components for the 
same original binary size. A similar pattern was obtained for b=25, which revealed that the 
SLM+PCA+Burt MCA model produces a much smaller misclassification rate compared to 
the SLM+PCA+Indicator MCA model due to the fact that the former model extracted much 
smaller binary components.   

In SLM, sparseness of objects in multinomial cells may influence the estimation of 
parameters and the performance of classification models that is directly related to the 
misclassifying of objects into groups. Sparseness of objects is referred to as the occurrence 
of too many empty cells in the SLM. For example, in the case of n=60 and b=25 as can be 
seen in Table 1, the SLM+PCA+Indicator MCA model extracts 10 binary components. These 
10 extracted components were considered very high in the context of SLM as they managed 
to produce up to 1,024 multinomial cells per group. Nevertheless, only 29 cells of π1 and 28 
cells of π2 were not empty. This means that on average as high as 97.22% are empty cells 
and it is absolutely impractical to be used for the construction of the SLM. This is the main 
and most important reason why the SLM+PCA+Indicator MCA model showed the highest 
misclassification rate at 0.5333, which means that more than half of the objects had been 
misclassified due to the fact that the majority of the created cells were empty cells. In contrast, 
the SLM+PCA+Burt MCA model achieved a much smaller misclassification rate at 0.0167 due 
to only six binary components having been extracted, thus making the percentage of empty 
cells much lower i.e. 64.85% on average.  

Table 1 
Performance of SLM+PCA+Indicator MCA and SLM+PCA+Burt MCA models for all binary sizes 
measured under n=60    

Size of Binary Variables
SLM+PCA+Indicator MCA 5 10 15 20 25
Misclassification Rate 0 0 0.0333 0.3833 0.5333
Number of Binary Extracted (PCB) 3 6 7 9 10
Number of Continuous Extracted (PCC) 10 10 9 9 9
Number of Empty Cells (π1, π2) (1,0) (39,41) (99,104) (483,485) (995,996)
KL Distance 397.94 16.51 3.77 0.77 0.40
SLM+PCA+Burt MCA 5 10 15 20 25
Misclassification Rate 0 0 0 0 0.0167
Number of Binary Extracted (PCB) 2 4 5 6 6
Number of Continuous Extracted (PCC) 10 10 9 9 9
Number of Empty Cells (π1, π2) (0,0) (2,2) (11,11) (40,39) (42,41)
KL Distance 294.28 281.90 88.46 15.06 16.67
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The misclassification rate in either model was found to be highly related to the number 
of binary components that were extracted. This binary extracted amount was then discovered 
to be closely associated with the Kullack-Leibler (KL) distance, which can indirectly affect 
the performance of the newly constructed models. For example, the misclassification rate of 
the SLM+PCA+Indicator MCA model for the case of n=120 as shown in Table 2 rose higher 
when the KL distance grew smaller. This model achieved 0.6721 of misclassification rate with 
0.24 units of distance, while the misclassification rate for the SLM+PCA+Burt MCA model 
was only 0.0167 due to the distance being much greater, that is, 7.41 units. The performance 
of the newly constructed SLM+PCA+Indicator MCA model began to show a misclassification 
rate when the distance between the observed groups was less than 1.0 unit. This tells us that 
the smaller the distance between the groups under study, the higher the misclassification rate 
obtained.   

In addition, the number of binary components extracted is also strongly related to the 
number of empty cells that occurred, which further gives impact to the operation of the 
constructed SLM. For example, the misclassification rate of the SLM+PCA+Indicator MCA 
model for the case of n=180 increased as the number of empty cells grew due to the fact that 
many binary components were extracted. As shown in Table 3, the number of empty cells rose 
when the number of binary components extracted increased. As a result, for the case of b=25, 
the SLM+PCA+Indicator MCA model achieved 0.5688 of the misclassification rate with 12 
extracted binary components. This poor performance was due to the fact that nearly all the 
created cells were empty i.e. 97.95% of π1 and 98.10% of π2. 

Besides that, sample size was another factor that affected the performance of the constructed 
models. The misclassification rate was smaller when the sample size was larger. For example, 
the misclassification rates of the SLM+PCA+Indicator MCA model decreased from 0.6667 
and 0.6721 to 0.3221 and 0.5688 when the size of the sample was increased from n=120 to 
n=180, respectively for the cases b=20 and b=25. This demonstrated that the misclassification 
rate drops when the sample size is increased.

Table 2 
Performance of SLM+PCA+Indicator MCA and SLM+PCA+Burt MCA models for all Binary sizes 
measured under n=120     

Size of Binary Variables
SLM+PCA+Indicator MCA 5 10 15 20 25
Misclassification Rate 0 0 0 0.6667 0.6721
Number of Binary Extracted (PCB) 3 6 8 10 12
Number of Continuous Extracted (PCC) 18 19 18 18 17
Number of Empty Cells (π1, π2) (0,0) (26,29) (203,203) (964,966) (4012,4018)
KL Distance 684.04 48.29 7.72 0.27 0.24
SLM+PCA+Burt MCA 5 10 15 20 25
Misclassification Rate 0 0 0 0 0.0167
Number of Binary Extracted (PCB) 3 5 6 7 8
Number of Continuous Extracted (PCC) 18 19 18 18 17
Number of Empty Cells (π1, π2) (2,2) (4,3) (26,24) (82,78) (203,202)
KL Distance 164.04 849.91 169.86 34.63 7.41
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Tables 4 and 5 summarise the results of simulation studies for both SLM+PCA+Indicator 
MCA and SLM+PCA+Burt MCA models for different data conditions under investigation. We 
compared the performance of the newly constructed models under the same binary size (i.e. 
b=20) for all samples tested as displayed in Table 4. The SLM+PCA+Indicator MCA model 
recorded the lowest misclassification rate at 0.3221 when n=180, while the highest was 0.6667 
when n=120. On the other hand, the SLM+PCA+Burt MCA model achieved good performance 
as there were no objects that had been misclassified for all sizes of the samples examined.  

Table 3 
Performance of SLM+PCA+Indicator MCA and SLM+PCA+Burt MCA models for all binary sizes 
measured under n=180       

Size of Binary Variables
SLM+PCA+Indicator MCA 5 10 15 20 25
Misclassification Rate 0 0 0.011 0.3221 0.5688
Number of Binary Extracted (PCB) 4 6 9 10 12
Number of Continuous Extracted (PCC) 26 26 26 26 28
Number of Empty Cells (π1, π2)   (0,0) (16,16) (428,432) (964,966) (4012,4018)
KL Distance 2592.71 775.56 6.46 3.45 1.97
SLM+PCA+Burt MCA 5 10 15 20 25
Misclassification Rate 0 0 0 0 0
Number of Binary Extracted (PCB) 3 5 7 8 9
Number of Continuous Extracted (PCC) 18 26 26 26 28
Number of Empty Cells (π1, π2) (2,2) (4,5) (60,60) (182,179) (429,431)
KL Distance 205.56 1565.58 145.72 27.93 6.69

Table 4 
Performance of SLM+PCA+Indicator MCA and SLM+PCA+Burt MCA models for b=20 based on all 
sample sizes examined       

b=20 Misclassification Rate
SLM+PCA+Indicator MCA SLM+PCA+Burt MCA

n=60 0.3833 0
n=120 0.6667 0
n=180 0.3221 0

Next, Table 5 shows the performance of the SLM+PCA+Indicator MCA and SLM+PCA+Burt 
MCA models for n=120 with all sizes of the binary that were used for investigation purposes. 
The SLM+PCA+Indicator MCA model achieved zero misclassification rate for b=5, b=10 and 
b=15 while the SLM+PCA+Burt MCA model only showed a 0.0167 misclassification rate when 
b=25. The SLM+PCA+Indicator MCA model showed high misclassification rates when b=20 
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and b=25 due to a large number of binary components having been extracted by the indicator 
matrix, which were 10 and 12 for b=20 and b=25, compared to the second model, with 7 and 
8 binary components that were extracted using Burt MCA. 

Table 5 
Performance of SLM+PCA+Indicator MCA and SLM+PCA+Burt MCA models for n=120 based on all 
binary sizes measured       

n=120 Number of Binary Extracted 
(Indicator, Burt)

Misclassification Rate
SLM+PCA+Indicator MCA SLM+PCA+Burt MCA

b=5 (3, 3) 0 0
b=10 (6, 5) 0 0
b=15 (8, 6) 0 0
b=20 (10, 7) 0.6667 0
b=25 (12, 8) 0.6721 0.0167

Table 6 displays the average computational time for executing the whole process of simulation 
for all generated datasets. We discovered that computational time was strongly influenced by 
the number of binary components extracted and the size of the observed sample. Computational 
time increased with the number of binary components, where the number of multinomial cells 
grew as the binary variables grew. In addition, the amount of the sample used also greatly 
affected computational time as this study implemented double looping of the LOO procedure. 
Comparing the two constructed models, it can be observed that computational time for the 
SLM+PCA+Indicator MCA model was much higher than for the SLM+PCA+Burt MCA model, 
especially when the former had more binary variables and sample sizes. For example, for the 
case n=120 and b=15, the computational time for SLM+PCA+Burt MCA model was only 11 
hours and 42 minutes, while the SLM+PCA+Indicator MCA model required 1 day and 14 
hours to complete the simulation process. The time taken by the latter model was triple that 
of the former model. A similar pattern of computational time was observed for the other cases 
as well. Thus, it can be inferred that the SLM+PCA+Burt MCA model was more efficient in 
terms of computational time compared to the SLM+PCA+Indicator MCA model. 
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Results from Real Dataset 

This study further utilised the new constructed models i.e. SLM+PCA+Burt MCA and 
SLM+PCA+Indicator MCA to interpret full breast cancer data associated with the influences 
of psychosocial behaviour among breast cancer patients conducted at King’s College Hospital, 
London. The full breast cancer data were derived from 137 women with breast tumours who 
had been divided into two groups i.e. the benign tumour group (π1) consisting of 78 women 
and the malignant tumour group (π2) consisting of 59 women. The original dataset contained 
15 variables comprising two continuous variables, six ordinal variables with 11 states each, 
four nominal variables with three states each and three binary variables. It has become the 
practice to treat ordinal variables as continuous and to convert nominal variables to binary 
variables (Krzanowski, 1975; Mahat et al., 2007; Hamid, 2014). Therefore, this study treats 
six ordinal variables as continuous variables and converts all four nominal variables to binary 
values. By treating ordinal variables as continuous and dichotomising nominal variables into 
binary variables, the dataset was given a new dimension consisting of eight continuous and 
11 binary variables.   

In order to assess the performance of the newly constructed models, we compared them 
with other classification methods including linear discriminant analysis (LDA), quadratic 
discriminant analysis (QDA), logistic discrimination (logistic), linear regression model 
(regression), classification tree (tree), SLM with variable selections and SLM with double 
PCA (2PCA) using a real dataset i.e. for full breast cancer. Comparisons were made in terms 
of misclassification rate as shown in Table 7. Results from this data demonstrated that the 
SLM+PCA+Burt MCA and SLM+PCA+Indicator MCA models yielded a low misclassification 

Table 6 
Average computational time of SLM+PCA+Indicator MCA and SLM+PCA+Burt MCA models for all 
simulated datasets      

Sample 
Size

n = 60 Sample 
Size

n = 120 Sample 
Size

n = 180

Mixed 
Variables 
Measured

Indicator Burt Mixed 
Variables 
Measured

Indicator Burt Mixed 
Variables 
Measured

Indicator Burt

c=30, 
b=5

1 hour 8 
minutes

c=60,
b=5

2.62  
hours

2.29 
hours

c=90,
b=5

14.24
hours

7.97
hours

c=30, 
b=10

1.73 
hours

32 
minutes

c=60,
b=10

11.49
 hours

6.66
hours

c=90,
b=10

1.38 days 20.73
hours

c=30, 
b=15

3.3 hours 1 hour c=60, 
b=15

38 hours 11.42 
hours

c=90,
b=15

10.08 
days

2.75
days

c=30, 
b=20

17.1 
hours

1.67
 hours

c=60, 
b=20

9 days 19.27
hours

c=90,
b=20

12.5 days 6.46 
days

c=30, 
b=25

36 hours 3.15
 hours

c=60, 
b=25

11.83 
days

1.54 
days

c=90, 
b=25

24.08 
days

10.13
days
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rate at 0.2336 and 0.3066, respectively, where the former model performed the best among 
all the classification methods compared. The second in the ranking was the SLM with double 
PCA. Meanwhile, the constructed SLM+PCA+Indicator MCA model was in seventh ranking, 
which means that it performed worse than LDA, regression and logistic discrimination. 
Nevertheless, the SLM with variable extractions performed better than the SLM with variable 
selections. The findings exhibited that SLM+PCA+Burt MCA was the most appropriate method 
to manage the extraction process of large continuous and binary variables before performing 
classification tasks. 

Table 7 
Comparison of eight classification methods for full breast cancer dataset  

Classification Methods Selection Strategy Misclassification 
Rate

Performance
Rating

LDA Include all variables 0.2920 4
QDA Include all variables 0.4453 12
Logistic Include all variables 0.2847 3

Forward selection 0.3139 8
Regression Backward selection 0.2920 4

Stepwise selection 0.2920 4
Tree Auto termination 0.3139 8
Smoothed Location Model:
(i)   Smoothed LM with
       variable selections

Forward selection 0.3139 8
Stepwise selection 0.3139 8

(ii)  Smoothed LM with double PCA PCA+PCA (2PCA) 0.2774 2
(iii) Smoothed LM with PCA and MCA PCA + Indicator MCA 0.3066 7

PCA + Burt MCA 0.2336 1

CONCLUSION

In this study, we investigate the performance of the newly constructed classification models 
i.e. SLM+PCA+Indicator MCA and SLM+PCA+Burt MCA, measured based on their 
misclassification rates using the location model as a basis for the construction. Both of these 
classification models showed good performance under b=5, b=10 and b=15 for all sizes of 
samples inspected. However, the overall results revealed that SLM+PCA+Burt MCA model 
performed better than the SLM+PCA+Indicator MCA model for all sample sizes and binary 
variables that were tested as well as in terms of computational time. This study also found that 
PCA and Burt MCA were superior in extracting and reducing the large number of continuous 
and binary variables. Findings from simulation and real datasets proved that the two newly 
constructed location models can be considered potential tools in discriminant analysis when 
practitioners are faced with a large number of mixed variables, mainly binary variables.
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